

テクノウェーブ株式会社

目次

1.	はじめに	4
Ľ	〕 安全にご使用いただくために	4
C] その他の注意事項	4
] マニュアル内の表記について	5
٢] 関連マニュアル	5
2.	製品概要	6
Ľ	〕 特徴	6
٢] 『USBM3069F』 の主な I/O 機能	6
٢] 製品の使用法について	7
	ホストパソコンから制御する	7
	機能を追加する/単体で動作させる	8
	ハードウェアのみ利用する	8
3.	製品仕様	9
٢] 仕様概略	9
Ľ	〕 端子説明	12
٢	〕 ジャンパースイッチ	15
	モード設定	15
۵] 電源の設定	16
	バスパワーで使用する	16
	セルフパワーで使用する	16
	2 ウェイ電源(バスパワー/セルフパワー兼用)で使用する	16
C] メモリマップ	18
٢] フラッシュメモリ	19
4.	使用準備	20
Ľ] ドライバのインストール	20
	Windows 7 のインストール例	20
	Windows XP のインストール例	22
	古いドライバからの更新方法	24
E] VI ライブラリのインストール	25
Ľ] 設定ツール	25
	設定ツールのインストール	25
	設定ツールについて	25
	コンフィギュレーション情報の変更	26
	製品情報の設定	27

	端子初期状態の設定 ファームウェアの更新	28 29
5.	トラブルシューティング	30
	製品と通信ができない場合	30
API	PENDIX	30
	製品の応答時間	30
保証	期間	31
ትታ	。— 1. 传动	21

1. <u>はじめに</u>

このたびはマイコンボード『USBM3069F』をご購入頂き、まことにありがとうございます。以下をよくお読みになり、安全にご使用いただけますようお願い申し上げます。

□ 安全にご使用いただくために

製品を安全にご利用いただくために、以下の事項をお守りください。

□ その他の注意事項

- 本製品は一般民製品です。特別に高い品質・信頼性が要求され、その故障や誤動作が直接人命 を脅かしたり、人体に危害を及ぼす恐れのある機器に使用することを前提としていません。本製品 をこれらの用途に使用される場合は、お客様の責任においてなされることになります。
- お客様の不注意、誤操作により発生した製品、パソコン、その他の故障、及び事故につきましては 弊社は一切の責任を負いませんのでご了承ください。
- 本製品または、付属のソフトウェアの使用による要因で生じた損害、逸失利益または第三 者からのいかなる請求についても、当社は一切その責任を負えませんのでご了承ください。

□ マニュアル内の表記について

本マニュアル内では対応製品『USBM3069F』を、単に「製品」または「デバイス」と表記する場合が あります。また、『USBM3069F』は、ほとんどの機能において、前バージョン『USBM3069』の上位互換 となっています。接続、プログラミング方法などのほとんどは同様となっていますので、製品名を表記 する場合、特別区別する必要が無い限り『USBM3069』と表記しています。

本マニュアル内でハードウェアの電気的状態について記述する必要がある場合には、下記のよう に表記します。

表 1 電気的状態の表記方法

表記	状態
″ON″	電流が流れている状態、スイッチが閉じている状態、オープンコレクタ(オープンドレ
	イン)出力がシンク出力している状態。
″OFF″	電流が流れていない状態、スイッチが開いている状態、オープンコレクタ(オープンド
	レイン)出力がハイインピーダンスの状態。
″Hi″	電圧がロジックレベルのハイレベルに相当する状態。
″Lo″	電圧がロジックレベルのローレベルに相当する状態。
″Z″	端子がハイインピーダンスの状態。

数値について「0x」、「&H」、「H'」はいずれもそれに続く数値が 16 進数であることを表します。 "0x10"、"&H1F"、"H'20"などはいずれも 16 進数です。同様に「B'」に続く数値は 2 進数であること を表します。例えば"B'01000001"のように表記されます。数値の最初に特別な表記が無い場合は 10 進数です。

□ 関連マニュアル

製品の使用方法に関して、以下のドキュメントを用意しております。合わせてご参照ください。

表 2 製品関連マニュアル

ドキュメント名	内容
USBM3069F ユーザーズマニュアル (本マニュアル)	基本事項、ハードウェア、設定など
M3069 マイコンボード プログラミング・リファレンス	パソコンのアプリケーションプログラムから製品を制御する方法、TWB ライブラリの各関数の説明
M3069 マイコンボード ユーザーファーム開発マニュアル	ユーザーファーム(マイコン用プログラム)の開発方法
VI ライブラリヘルプファイル	LabVIEW 用ライブラリの使用方法

2. <u>製品概要</u>

□ 特徴

- 『USBM3069F』はマイコンチップ「H8/3069RF」(ルネサス エレクトロニクス社)と USB インタフェース IC「FT245RL」(FTDI¹社)を搭載したマイコンボードです。
- 「FT245RL」の機能により、マイコン用のファームウェア、パソコン用のドライバソフトなどを開発する こと無く、USB インタフェースを持ったパソコン用周辺機器を簡単に作製することができます。
- 搭載されたマイコンには、あらかじめ内蔵の周辺機能を簡単に利用するためのファームウェアが書き込まれ、すぐに USB-I/O ボードとして使用できます。そのため高価なエミュレータや開発環境、マイコンの知識などは必ずしも必要ではありません。
- USB-I/Oボードとして利用するための専用ライブラリが付属します。パソコン上のアプリケーションソフトからライブラリ関数を呼び出すことで、簡単に製品のI/O機能を利用できます。専用 API は DLL モジュールで提供され、Viusal C++[®]や Visual Basic[®]、Visual C^{#®}で作成したプログラムから呼び出すことができます。
- デフォルトのファームウェアに追加するかたちで、ユーザー独自のマイコンプログラムを作成し、ボード上のマイコンにダウンロードすることができます。I/O 機能はそのまま利用できますので、タイムクリティカルな処理や、オリジナルの機能だけをプログラミングして追加することができます。
- 『USBM3069F』ボードの物理的なレイアウトや I/O 機能のほとんどは、弊社製品『LANM3069』と互換性を持っています。専用ライブラリも共通となっていますので、多くのアプリケーションプログラムは変更なく USB インタフェースにもネットワークインタフェースにも対応することができます。
- 電源供給方式として、バスパワー、セルフパワー、2 ウェイ(バスパワー/セルフパワー兼用)が選 択可能ですので、周辺回路に応じて自由に電源を選択できます。
- GUIで操作できる各種設定ツールが付属しています。
- ボードには正式な VID、PID が付与されていますので、別途取得する必要がありません。
- Visual Basic for Applications に対応しています。
- LabVIEWTM に対応しています。

□ 『USBM3069F』の主な I/O 機能

- ・ デジタル I/O
- ・ 8ビットバス(1M バイト×4のアドレス空間)
- ・ AD コンバータ(10 ビット)
- ・ DA コンバータ(8 ビット)
- ・ PWM 出力
- ・ 16 ビットハードウェアカウンタ
- ・ 32 ビットソフトウェアカウンタ
- シリアル通信(RS-232C 信号レベル、調歩同期、300~38400bps)

¹ Future Technology Devices International Limited

Visual C++ 、Visual Basic、Visual C# は米国 Microsoft Corporationの米国およびその他の国における登録商標または商標です。 LabVIEW は、National Instruments Corporationの商標です。

□ 製品の使用法について

ホストパソコンから制御する

製品には、あらかじめ専用のマイコンプログラムが書き込まれています。このプログラムのことをシス テムファーム と呼びます(パソコン上で動作するプログラムやソフトウェアと区別するために、マイコ ン用のプログラムのことをファームウェア、または単にファームと呼びます)。

システムファームの役割は、USB インタフェースを通じてホストパソコンから送られてくる命令(制御 コマンド)を解釈し、I/O やタイマなどのマイコン機能を制御することです。

製品の最も基本的な使用方法は、このシステムファームを利用してハードウェアを制御することで す。下の図はこの場合の階層図を示しています。システムファームに命令を送るには、ホストパソコン 上で動作するアプリケーションプログラムを作成し、用意された専用ライブラリの API 関数を呼び出し ます。この専用ライブラリのことを *TWB ライブラリ* と呼びます。

図 1 システムファームと TWB ライブラリによる制御

機能を追加する/単体で動作させる

ホストパソコンから制御する方法の他に、ボード上のマイコン用プログラムを効率よく開発できる仕 組みも用意されています。そのため、マイコン上のプログラムでなければ実現が困難な複雑な制御 や、リアルタイム性が要求される処理にも対応可能です。この、マイコン上で動作する追加プログラ ムのことを**ユーザーファーム**と呼びます。

ユーザーファームを利用することで、システムファームではサポートされない新しいコマンドを追加 したり(図 2)、ホストパソコンと無関係に自律的に動作²させたりが可能になります。

図 2 新しいコマンドの追加

ユーザーファームの開発言語は C 言語、開発環境は『YellowIDE(YCH8)』、『イエロースコープ (YSH8)』³をサポートしています。

ハードウェアのみ利用する

一般のマイコンボードと同様に市販の開発ツールを利用して、マイコンのプログラムを開発し、内蔵 フラッシュを書き換えて使用することも可能です。この方法では、マイコンの内蔵機能⁴や、割り込み などを自由に利用できます。しかし、TWB ライブラリによる制御はできなくなります。

内蔵フラッシュメモリにプログラムをダウンロードするには、専用のフラッシュライティングツールを使用します。ツールの詳細は25ページを参照してください。

- 製品では H8/3069RF をモード 5 で利用しています。その他のモードには設定できません。
- 市販のフラッシュライティングツールを使用し、SCI(シリアルポート)経由でフラッシュメモリを書き換えると、USB 経由でのプログラムのダウンロード及びファームウェアの更新ができなくなります。必ず付属ツールを使用するようにしてください。

² セルフパワーでの動作が必要です。

³ 『YellowIDE(YCH8)』及び『イエロースコープ(YSH8)』は株式会社エル・アンド・エフの製品です。

⁴ ボードの仕様上、外部に接続されない信号がありますので利用できない機能があります。回路図で確認してください。

3. <u>製品仕様</u>

□ 仕様概略

表 3 仕様概略

項目		仕様	備考	
基板寸法		95 × 72 [mm]	コネクタなどの突起部含まず	
電源電圧		4.5~5.25[V]		
消費電流(ボー)	ド単体、無負荷時)	70 [mA]		
動作温度範囲		0∼70[°C]		
フラッシュメモリ	のプログラム保持年数	10 年		
インタフェース		USB	フルスピード(12Mbps)	
	入力専用ポート	最大 20ピン		
I/O ポート数	出力専用ポート	8ピン	オープンコレクタ出力	
	入出力兼用ポート	最大 16ピン		
AD コンバータチャンネル数		4	入力範囲 0Ⅴ~5∨	
DA コンバータチャンネル数		2	出力範囲 0∨~5∨	
ハードウェアカワ	ウンタ入力数	最大 2		
ソフトウェアカウ	シタ入力数	4	立下りのみカウント可能	
シリアルチャンネル数		2	RS-232C 準拠の信号レベル	
PWM 出力数		最大 3	16 ビットタイマ機能を利用	
通信速度	ライト(PC→ボード)	900 [KBytes/sec] ⁵	DMA 使用時の代表値	
四日还反	リード(PC←ボード)	550 [KBytes/sec] ⁵	DMA 使用時の代表値	
付属ライブラリ対応 OS		Windows XP, Vista, 7, 8, 8.1, 10		

⁵ 16K バイトのデータを内蔵ファームの DMA 転送機能を使用して入出力することで測定した結果です。マイコンや USB の使 用状況により変化します。また、USB の性質上、小さなデータを入出力する場合は見かけのスループットが極端に悪くなる場 合があります(31 ページ参照)。

表 4 定格

	項目	記号	Min	Max	単位	測定条件
電源電圧		VCC	-0.3	5.25	V	
アナログ電源電圧		AVCC	-0.3	5.25	V	
	AD0~AD3, RSV0,PUENB,VREF	Vin	-0.3	AVCC+0.3	V	
入力电圧	USB_RES#,SP/BP#	Vin	-0.5	15	V	25°C
	上記以外	Vin	-0.3	VCC+0.3	V	
出力電圧	POUT#	Vout	0	50	V	DC 出力時,25℃
	P1,P2,P5,			10		
出力 Lo レベル	PA0,PA1	I_{OL}		0.2	mA	
許容電流	POUT#			30		DC 出力時,25℃
	上記以外			2		
出力 Hi レベル 許容電流	POUT#以外	I _{он}		2	mA	
纷 和山土 」	P1,P2,P5 の総和			80		
ベル許容電流	POUT#以外でP1,P2,P5を 含む総和	Σ _{ol}		120	mA	
総和出力Hiレベ ル電流	POUT#以外の総和	Х _{он}		40	mA	
電源コネクタ(J16)	許容電流	Ivcc		3	А	25°C
動作温度		Topr	0	70	°C	

USB 端子、シリアル入出力端子は含まれません。

測定条件、本書に記載されない特性については「H8/3069R F-ZTAT™ハードウェアマニュアル」をご参照ください。

表 5 DC 特性

項目		記号	Min	Max	単位	測定条件
		Vt⁻	1.0			
シュミットトリカ		Vt^{+}		VCC × 0.7	V	
人力電圧	P02#,P03#	$Vt^+ - Vt^-$	0.4			
2 -	RES#,PA0~PA7,		2.0			
スカ	PC2#,PC3#以外	VIH	2.0		V	
	RES#		VCC-0.7			
л н	RES#,PA0~PA7,	V_1		0.0	V	
人力	PC2#,PC3#以外			0.0		
L0 レベル 电圧	RES#			0.5		
出力	PA0,PA1,POUT#以外	Vou	3.5		v	I _{он} = -1mA
Hi レベル電圧	PA0,PA1	·OH	3.5		•	I _{он} = -200 <i>µ</i> А
ш.њ	PA0,PA1,POUT#以外			0.4		I _{OL} = 1.6mA
ロリートベル電圧	PA0,PA1	V _{OL}		1.0	V	$I_{\rm OL} = -200 \mu A$
LO レベル电圧	POUT#			1.0		$I_{OL} = 30 \text{mA}$

USB 端子、シリアル入出力端子は含まれません。

測定条件、本書に記載されない特性については「H8/3069R F-ZTAT™ハードウェアマニュアル」をご参照ください。

表 6 内蔵アナログリファレンス特性

24 0 1 4/HAV /								
項目	Min.	Max.	単位	条件				
電圧	4.985	5.015	V	全温度範囲				
温度偏差	-	25	ppm/°C					

表 7 AD 変換特性 6

項目	Min.	Тур.	Max.	単位
アナログ入力範囲	0	-	VREF	V
分解能	10	10	10	bit
アナログ入力容量		-	20	рF
許容信号源 インピーダンス		-	5	kΩ
非直線性誤差		-	±3.5	LSB
オフセット誤差		-	±3.5	LSB
フルスケール誤差		_	±3.5	LSB
量子化誤差		_	±0.5	LSB
絶対精度		-	±4.0	LSB

表 8 DA 変換特性 6

項目	Min.	Тур.	Max.	単位	測定条件
アナログ出力範囲	0	-	VREF	V	
分解能	8	8	8	bit	
绝 过 靖 甲	Ι	±1.5	±2.0		負荷抵抗 2MΩ
小G ^] 作用 /文	-	-	±1.5	LOD	負荷抵抗 4MΩ

表 9 PWM 出力特性

項目	仕様
周波数	最大 12.5 [MHz]
デューティ分解能	出力周波数に依存

表 10 ハードウェアカウンタ特性

項目	仕様
周波数	最大 2.5 [MHz]
カウンタビット数	16 [bit]

表 11 ソフトウェアカウンタ(パルスカウンタ)特性

	項目	仕様	備考
田油粉	チャンネル 0	33.3 [KHz]	1チャンネルのみ使用時の最大値。複
向次剱	チャンネル 1~3	40 [KHz]	数使用、他機能と同時使用で低下。
カウンタビット数		32 [bit]	

表 12 シリアルポートの仕様

項目	仕様
方式	調歩同期式(フロー制御なし)
ビットレート	300~38400 [bps]
信号レベル	RS-232C 準拠

表 13 USB ID

I	頁目	值
ベンダーID		H'1237
プロダクト ID	バスパワー用	H'F001
	セルフパワー用	H'F002

⁶ 搭載マイコンの仕様に準じます。詳細は「H8/3069R F-ZTAT™ハードウェアマニュアル」を参照してください。

□ 端子説明

以下は『USBM3069F』のピン説明です。右の列には参考として H8/3069RF の対応するピン番号と 信号名を示します。POUT0#~POUT7#についてはトランジスタを介してオープンコレクタ出力となっ ていますので、H8/3069RF の端子とは直結されていません。詳しくは回路図をご参照ください。 表中の OC はオープンコレクタ、#は負論理の信号、SH は入力ピンとして機能するときにシュミットト リガ入力となることを示します。

表 14 CN1(J15) 7站	耑子
------------------	-----------

USBM3069 での番号/名称/機能/方向 H8/3069RF の番号/					
コネクターピン番	信号名	説明	方向	番号	信号名
CN1-1	D15	データバス	I/0	34	D15/P37
CN1-2	D14	データバス	I/0	33	D14/P36
CN1-3	D13	データバス	I/0	32	D13/P35
CN1-4	D12	データバス	I/0	31	D12/P34
CN1-5	D11	データバス	I/0	30	D11/P33
CN1-6	D10	データバス	I/0	29	D10/P32
CN1-7	D9	データバス	I/0	28	D9/P31
CN1-8	D8	データバス	I/0	27	D8/P30
CN1-9	D7/P47	データバス/デジタル入出力	I/0	26	D7/P47
CN1-10	D6/P46	データバス/デジタル入出力	I/0	25	D6/P46
CN1-11	D5/P45	データバス/デジタル入出力	I/0	24	D5/P45
CN1-12	D4/P44	データバス/デジタル入出力	I/0	23	D4/P44
CN1-13	D3/P43	データバス/デジタル入出力	I/0	21	D3/P43
CN1-14	D2/P42	データバス/デジタル入出力	I/0	20	D2/P42
CN1-15	D1/P41	データバス/デジタル入出力	I/0	19	D1/P41
CN1-16	D0/P40	データバス/デジタル入出力	I/0	18	D0/P40
CN1-17	PC1#	パルスカウンタ入力	Ι	17	IRQ5#/P95/SCK1
CN1-18	PCO#	パルスカウンタ入力	Ι	16	IRQ4#/P94/SCK0
CN1-19	GND	電源			
CN1-20	VCC	電源			

表 15 CN2(J8)端子

USBM3069 での番号/名称/機能/方向 H8/3069RF の番号/名称					
コネクターピン番	信号名	説明	方向	番号	信号名
CN2-1	POUT4#	デジタル出力(OC、LED 駆動可)	0	9	RxD2/PB7/TP15
CN2-2	POUT3#	デジタル出力(OC、LED 駆動可)	0	8	TxD2/PB6/TP14
CN2-3	POUT2#	デジタル出力(OC、LED 駆動可)	0	7	LCAS#/PB5/TP13/SCK2
CN2-4	POUT1#	デジタル出力(OC、LED 駆動可)	0	6	UCAS#/PB4/TP12
CN2-5	CS5#	CS5#出力	0	4	CS5#PB2/TMO2/TP10
CN2-6	PA7/TIOCB2	デジタル入出力(SH)	I/0	100	PA7/A20/TP7/TIOCB2
CN2-7	PA6/TIOCA2	デジタル入出力(SH)/PWM 出力	I/0	99	PA6/A21/TP6/TIOCA2
CN2-8	PA5/TIOCB1	デジタル入出力(SH)	I/0	98	PA5/A22/TP5/TIOCB1
CN2-9	PA4/TIOCA1	デジタル入出力(SH)/PWM 出力	I/0	97	PA4/A23/TP4/TIOCA1
CN2-10	PA3/TIOCBO	デジタル入出力(SH)	I/0	96	PA3/TCLKD/TIOCB0/TP3
CN2-11	PA2/TIOCAO	デジタル入出力(SH)/PWM 出力	I/0	95	PA2/TCLKC/TIOCA0/TP2
CN2-12	PA1/TCLKB	デジタル入出力(SH)/ハードウェアカウンタ入力	I/0	94	PA1/TP1/TCLKB/TEND1#
CN2-13	PA0/TCLKA	デジタル入出力(SH)/ハードウェアカウンタ入力	I/0	93	PA0/TP0/TCLKA/TEND0#
CN2-14	CSO#	CSO#出力	0	91	P84/CS0#
CN2-15	ADTRG#	AD トリガ入力	Ι	90	P83/CS1#/IRQ3#/ADTRG#
CN2-16	PC3#/CS2#	パルスカウンタ入力(SH)/CS2#出力	I/0	89	P82/CS2#/IRQ2#
CN2-17	PC2#/CS3#	パルスカウンタ入力(SH)/CS3#出力	I/0	88	P81/CS3#/IRQ1#
CN2-18	POUTO#	デジタル出力(OC、LED 駆動可)	0	87	P80
CN2-19	GND	電源			
CN2-20	VCC	電源			

7 ()内は旧バージョンの『USBM3069』のコネクタ番号です。

表 16 CN3(J12)端子

	USBM3069 での番号/名称/機能/方向 H8/3069RF の番号/名称					
コネクターピン番	信号名	説明	方向	番号	信号名	
CN3-1	GND	電源				
CN3-2	DA1	アナログ出力	0	85	P77/AN7/DA1	
CN3-3	DAO	アナログ出力	0	84	P76/AN6/DA0	
CN3-4	PUENB	P4 のプルアップをコントロール	Ι	83	P75/AN5	
CN3-5	UFIRM#	J20 と同機能。"Lo"でユーザーファーム起動	Ι	82	P74/AN4	
CN3-6	AD3	アナログ入力	Ι	81	P73/AN3	
CN3-7	AD2	アナログ入力	Ι	80	P72/AN2	
CN3-8	AD1	アナログ入力	Ι	79	P71/AN1	
CN3-9	ADO	アナログ入力	Ι	78	P70/AN0	
CN3-10	VREF	アナログリファレンス		77	VREF	
CN3-11	AVCC	アナログ電源		76	AVCC	
CN3-12	VCC	電源				

表 17 CN4(J13)端子

	USBN		H8/3069RFの番号/名称		
コネクターピン番	信号名	説明	方向	番号	信号名
CN4-1	GND	電源			
CN4-2	LWR#	下位バイトライトストローブ	0	72	P66/LWR#
CN4-3	WR#	上位バイトライトストローブ	0	71	P65/HWR#
CN4-4	RD#	リードストローブ	0	70	P64/RD#
CN4-5	AS#	アドレスストローブ	0	69	P63/AS#
CN4-6		未使用	Ι	64	NMI#
CN4-7	RES#	リセット	Ι	63	RES#
CN4-8		未使用	Ι	62	STBY#
CN4-9	CLK	25MHz クロック出力	0	61	CLK
CN4-10	POUT7#	デジタル出力(00、LED 駆動可)	0	60	P62#
CN4-11	POUT6#	デジタル出力(OC、LED 駆動可)	0	59	P61#
CN4-12	POUT5#	デジタル出力(OC、LED 駆動可)	0	58	P60#

表 18 CN5(J3)端子

	H	8/3069RF の番号/名称			
コネクターピン番	信号名	説明	方向	番号	信号名
CN5-1	P53/A19	デジタル入力/アドレスバス	I/0	56	A19/P53
CN5-2	P52/A18	デジタル入力/アドレスバス	I/0	55	A18/P52
CN5-3	P51/A17	デジタル入力/アドレスバス	I/0	54	A17/P51
CN5-4	P50/A16	デジタル入力/アドレスバス	I/0	53	A16/P50
CN5-5	P27/A15	デジタル入力/アドレスバス	I/0	52	A15/P27
CN5-6	P26/A14	デジタル入力/アドレスバス	I/0	51	A14/P26
CN5-7	P25/A13	デジタル入力/アドレスバス	I/0	50	A13/P25
CN5-8	P24/A12	デジタル入力/アドレスバス	I/0	49	A12/P24
CN5-9	P23/A11	デジタル入力/アドレスバス	I/0	48	A11/P23
CN5-10	P22/A10	デジタル入力/アドレスバス	I/0	47	A10/P22
CN5-11	P21/A9	デジタル入力/アドレスバス	I/0	46	A9/P21
CN5-12	P20/A8	デジタル入力/アドレスバス	I/0	45	A8/P20
CN5-13	P17/A7	デジタル入力/アドレスバス	I/0	43	A7/P17
CN5-14	P16/A6	デジタル入力/アドレスバス	I/0	42	A6/P16
CN5-15	P15/A5	デジタル入力/アドレスバス	I/0	41	A5/P15
CN5-16	P14/A4	デジタル入力/アドレスバス	I/0	40	A4/P14
CN5-17	P13/A3	デジタル入力/アドレスバス	I/0	39	A3/P13
CN5-18	P12/A2	デジタル入力/アドレスバス	I/0	38	A2/P12
CN5-19	P11/A1	デジタル入力/アドレスバス	I/0	37	A1/P11
CN5-20	P10/A0	デジタル入力/アドレスバス	I/0	36	A0/P10

表 19 CN6 端子

	USBM3069F	での番号/名称/機能/方向			H8/3069RFの番号/名称
コネクターピン番	信号名	説明	方向	番号	信号名
CN6-1	FLASH	J17と同機能。"Hi"でフラッシュ書換え	Ι		
CN6-2	USB_RES#	FT245RL のリセット入力	Ι		
CN6-3	SP/BP#	セルフパワー/バスパワーの切替え	Ι		
CN6-4	GND	電源			

以下はシリアル通信(調歩同期)のための端子です。ユーザーファームのデバッグを行う場合、シリアル1をデバッガで使用します。信号レベルはRS-232C準拠となっています。

表 20 シリアル通信用端子

コネクターピン番	信号名	説明
J4-1	TxD0	シリアル0出力
J4-2	RxD0	シリアル0入力
J4–3	GND	
J7-1	TxD1	シリアル1出力
J7-2	RxD1	シリアル1入力
J7-3	GND	

適合コネクタ:5051-03、51191-0300(日本モレックス株式会社)

表 21 電源端子

コネクターピン番	信号名	説明
J16-1	VCC	セルフパワー時は電源入力端子、
J16-2	GND	バスパワー時は+5Vを取り出せます
適合コネクタ	: 5051-02 51	191-0200(日本モレックス株式会社)

システムファームを使用する場合、予約、未使用端子は接続しないでください。

□ ジャンパースイッチ

ジャンパースイッチの機能を示します。「J14」(リセット)以外のスイッチ操作は電源オフの状態で行ってください。

表 22 ジャンパースイッチ

番号	説明
J1	VREFを外部から与える場合は"OFF"にします。VREFを入力しない場合は必ず"ON"にしてください。
J2	AVCC を外部から与える場合に"OFF"にします。AVCC を入力しない場合は必ず"ON"にしてください。
J5	セルフパワーで使用する場合"OFF"にします。その他は"ON"にしてください。
J14	マイコンをリセットする場合"ON"にします。リセット後は"OFF"にしてください。
J17	フラッシュメモリを書き換える場合は"ON"します。通常使用では"OFF"にします。
J19	ブートモードでフラッシュメモリを書き換える場合は″OFF″にします。普段は″ON″で使用します。
120	「ON"で起動すると、フラッシュ上のユーザーファームを実行します。"OFF"の場合、システムファームのデ
520	フォルト動作を行います。
101	P4 ポートのプルアップを禁止する場合"ON"します。プルアップする場合は"OFF"にします。
JZT	後述の設定ツール「M3069Option」で設定を行った場合はツールでの設定が優先されます。

モード設定

表 23、図 5は「J17」、「J19」、「J20」による製品のモード設定をまとめたものです。

表	23	モー	ド設定
~	20	-	

モード名	J17 [FLASH]	J19 [UBOOT]	J20	説明
通常モード	OFF	OFF/ON	OFF	通常動作。
ユーザーファーム起動モード	OFF	OFF/ON	ON	通常動作。ユーザーファームが書き込まれて いれば起動します。
ブートモード	ON	OFF	OFF/ON	ブートモード [®] で起動。市販のツールでフラッシュメモリを書き換える場合に設定します。
フラッシュ書換えモード	ON	ON	OFF/ON	フラッシュ書換えモード(ユーザーブートモー ド ⁹)で起動。 付属のフラッシュライティングツー ルを使用する場合に設定します。

ブートモードを使用する市販のライティングツールではユーザーマットの書き換え時に、ユーザーブートマットを消去してしまいます。その場合、付属ツールでのファームアップデート及びフラッシュメモリへのプログラムのダウンロード機能は使用できなくなりますのでご注意ください。

⁸ 市販ツールのほとんどはこのモードでフラッシュの書き換えを行います。シリアル 1 とパソコンのシリアルポートを接続してフラッシュの書き換えが行えますが、本製品ではこのモードのご使用はお薦めしません。

⁹ ユーザーブートマットと呼ばれる特殊なフラッシュメモリ領域を使用してマイコンを起動します。『USBM3069』では USB 経由でフラッシュを書き換えるためのプログラムが起動します。ユーザーブートモードの詳細は H8/3069RF のマニュアルを参照してください。

・枠で囲まれたジャンパースイッチが"ON"の箇所です。 ・J1、J2 はアナログのリファレンスのためのスイッチです。モード設定には関係ありません。 図5 モード設定例

□ 電源の設定

USB 機器では、内蔵もしくは AC アダプタなどの電源を使用し、ホストパソコンからの電源供給を必要としない機器をセルフパワーデバイスと呼び、USB ケーブルを通じてホストパソコン、または、USB ハブから電源の供給を受ける機器をバスパワーデバイスと呼びます。

『USBM3069』はどちらの用途でも使用できます。また、『USBM3069F』ではバスパワー、セルフパワ ーどちらにも対応する 2 ウェイ設定で利用することも可能となっています。電源設定は、出荷時には バスパワーとなっています。用途に合わせて変更してください

バスパワーで使用する

「J5」のジャンパースイッチを"ON"にして使用します。コンフィギュレーション情報をセルフパワー専用に変更した場合は、バスパワー用に戻す必要があります。

セルフパワーで使用する

「J5」のジャンパースイッチを"OFF"にして使用します。出荷時にはデバイスのコンフィギュレーション情報としてバスパワーデバイスの情報が書き込まれています。付属の設定ツール「USBMTools」 (25 ページ)を使用して、デバイスのコンフィギュレーション情報をセルフパワー専用のものに書き換えてください。

デフォルトの状態では、バスパワータイプの USB ハブとの接続時に「電力供給能力を超えました。」 というメッセージが表示されて使用できない場合があります。

2ウェイ電源(パスパワー/セルフパワー兼用)で使用する

「J5」のジャンパースイッチを"ON"にして使用します。また、SP/BP#端子を電源状態に合わせて操作する必要があります。セルフパワー用電源が使用可能なときには SP/BP#端子を 4V 以上にしてください。バスからの電源が必要なときには SP/BP#端子が 1V 以下となるようにします。コンフィギュレーション情報をセルフパワー専用に変更した場合は、バスパワー用に戻す必要があります。

図 6 2 ウェイ設定の回路例

SP/BP#端子はボード内 でプルダウンされていま すが、バスパワー時にダ イオードの逆電流により 十分に電圧が下がらない

『USBM3069F』のコンフィギュレーション情報

USB デバイスは自分がどのようなデバイスであるかをホストに知らせるためにディスクリプタと呼ばれるデータを保 持しています。『USBM3069F』ではコンフィギュレーション情報の一部として、ディスクリプタ内の電源供給方式 や、消費するバス電力などの情報を書き換えています。

『USBM3069F』のデフォルトのコンフィギュレーションはバスパワーデバイスとなっており、バスからの電源電流と して 500mA を要求します。 パソコンや、 セルフパワーの USB ハブからは 500mA まで電流供給を受けることができ ますので、外付けの回路では VCC 端子を通して概ね 400mA 程度までを利用可能です。ただし、消費電流はボ ードの使用状況により変動しますので、全体の消費電流が 500mA を超えないようにご注意ください。

バスパワー動作する USB ハブは 1 つのポートに供給できる能力が小さいため、"電力供給能力の不足"となり製 品が使用できない場合があります。USB ハブはセルフパワータイプのものをご利用ください。

『USBM3069F』をセルフパワーでご利用になる場合、コンフィギュレーション情報をセルフパワー専用のものに書 き換えることで、バスからの電源を要求しなくなります。 つまり、 "電力供給能力の不足"として使用できなくなること はありません。ただし、このコンフィギュレーションではバスの電源は一切使用できませんので、必ず「J5」のジャン パースイッチを"OFF"にして使用してください。

以前のバージョンの『USBM3069』ではバスパワーのコンフィギュレーションのまま、セルフパワーで使用すること はできませんのでご注意ください。

□ メモリマップ

製品搭載マイコンが使用できるメモリ空間を図 7 に示します。メモリ空間はエリア 0~7 までの 8 つ のブロックに分けられて管理され、デコード回路を単純化できるようにエリア毎に別々の CS#信号が 割り当てられています。

図 7 のうち白い四角の領域は、ユーザーが利用できる外部バス空間です。H8/3069RF ではアドレス幅は 24 ビットですが、『USBM3069』では上位 4 ビットを除く下位 20 ビット(1M バイト分)だけがアドレスバスに出力されます¹⁰。そのため、各エリアの上位 1M バイトは下位 1M バイトと同じアドレスとみなされます。つまり、H'400000 番地と H'500000 番地は同じアドレスと扱われます。エリア 2、3、5 については上位 1M バイト、下位 1M バイトどちらでアクセスしても構いませんが、エリア 0 については下位 1M バイトに外部アドレスとして扱われないフラッシュメモリのエリアが存在するため、H'100000~H'1FFFFF のアドレス範囲でアクセスするようにしてください。

ユーザーメモリは H8/3069RF の内部メモリのうちユーザーに開放されているエリアで、一時的にデ ータを格納するのに利用できます。容量は小さいですが、ホストパソコンのメモリにデータを転送する 場合と比較して、マイコンのローカルバス同士でのデータ転送は高速に行えます。

FT245 はエリア 7 にマップされています。独自のマイコン用プログラムをご利用の場合には H'E00000 番地を通してアクセスできます。

¹⁰ アドレスを出力するためには P1,P2,P5 ポートを出力に切替える必要があります。

D フラッシュメモリ

メモリ空間の H'000000~H'07FFFF の領域はマイコン内蔵のフラッシュメモリに割り当てられてい ます。図 8 はフラッシュメモリ領域を詳しく示した図です。フラッシュメモリは全体で 512K バイト搭載 されており、EB0~EB15 の 16 ブロックに分けて管理されます。図のように EB0、EB4~EB11 はシス テムファームで利用される領域です。EB12~EB15 はユーザーファームを書き込むための領域とし て予約されています。EB1~EB3 の 12K バイトの領域はユーザーに開放されており、ボード固有の 設定情報やキャリブレーションデータの保存などに利用できます。

フラッシュメモリは各ブロック単位に消去可能で、128 バイト単位での書き込みを行います。書き込みを行う際は、その領域を必ず消去する(全てのビットが"1"となる)必要があります。

フラッシュメモリの書換え可能回数の目安は100回、データ保持年数は10年です。

4. <u>使用準備</u>

□ ドライバのインストール

ドライバは付属 CD-ROM に納められています。

表 24 ドライバファイルの格納フォ	ルダ
--------------------	----

使用 OS	ドライバファイルの格納フォルダ
Windows XP, Vista, 7, 8, 8.1, 10	CD の「¥DRIVER¥2000_XP」フォルダ

管理者のアカウントでログオンし、上記フォルダ内の「setup.exe」を起動します。

 必ず「setup.exe」によるインストールを行ってください。ハードウェアウィザードで CD-ROM 内のフォ ルダを指定、または、検索してインストールを行った場合、必要なファイルがコピーされません。

Windows 7 のインストール例

① 「setup.exe」を起動すると、次のようなウィンドウが表示されますので「はい」を選択します。

図 9 Windows 7 のドライバインストール画面(1)

- ② インストールプログラムが起動しますので、画面の指示に従ってインストールを行います。
- ③ インストールが開始されると、図 10のような画面が表示されますので、[インストール]を選択します。

Windows セキュリティ	
このデバイス ソフトウェアをインストールしますか?	
名前: USBM3069 CDM Driver 冬行元: Technowave Ltd.	
 "Technowave Ltd." からのソフトウェアを常に信 頼する(A) 	インストール(I) インストールしない(N)
信頼する発行元からのドライバー ソフトウェアのみをイン <u>スソフトウェアを判断する方法</u>	ストールしてください。 <u>安全にインストールできるデバイ</u>

図 10 Windows 7 のドライバインストール画面(2)

④ 次のような画面が表示されますので[完了]ボタンを押してください

図 11 Windows 7 のドライバインストール画面(3)

⑤ デバイスを USB ケーブルでパソコンに接続します。図 12 のように「デバイスマネージャー」の画面 に「USBM-Microcontroller BP」(または、「USBM-Microcontroller SP」)と表示されれば、ドライバが 正しくインストールされています。

「デバイスマネージャー」を表示するには[スタート]メニューの[コンピュータ]を右クリックし、[プロパティ]を選択します。「システム」画面が表示されますので、画面左の[デバイスマネージャー]をクリックしてください。

Windows XP のインストール例

- ① 「setup.exe」を起動し、画面の指示に従ってインストールを行います。
- ② インストールが開始されると図のような画面が表示されますので[続行]ボタンを押します。

図 13 Windows XP のドライバインストール画面(1)

③ 次のような画面が表示されますので[完了]ボタンを押してください。

図 14 Windows XP のドライバインストール画面(2)

④ デバイスを USB ケーブルでパソコンに接続すると、図のような画面が表示されますので、[いいえ、 今回は接続しません]を選択し、[次へ]のボタンを押します。

図 15 Windows XP のドライバインストール画面(3)

⑤ 図のような画面が表示されますので、[ソフトウェアを自動的にインストールする]を選択し、[次へ]の ボタンを押します。

図 16 Windows XP のドライバインストール画面(4)

⑥ 図のような画面が表示されますので、[続行]ボタンを押します。

<u>ハードウェ</u>	アのインストール このハードウェア: USB-Microcontroller BP を使用するためにインストールしようとしているソフトウェアは、このバージョンの Win dows との互換性を検証する Windows ロゴ テストに合格していません。 (このテストが重要である理由)
	 ・ ひつて入り生ましてあるませい ・ インストールを装行した場合、システムの動作が損なわれたり、システム がイマ安正になるなど、重大な障害を引き起こず裏因となる可能性があり ます。今ずぐインストールを中断し、Windows ロゴテストに合格したソフ ドウェアが入手可能かどうか、ハードウェア ペンターに確認されることを、 Microsoft は強くお勧めします。 旅行(©) インストールの停止(⑤)

- 図 17 Windows XP のドライバインストール画面(5)
- ⑦ 図のような画面が表示されますので、[完了]ボタンを押します。

図 18 Windows XP のドライバインストール画面(6)

⑧ 図 19 のように「デバイスマネージャー」の画面に「USBM-Microcontroller BP」(または、「USBM-Microcontroller SP」)と表示されれば、ドライバが正しくインストールされています。

図 19 Windows XP のドライバインストール確認

「デバイスマネージャー」を表示するには[マイ コンピュータ]を右クリックし、[プロパティ]を選択します。「システムのプロパティ」画面が表示されますので、[ハードウェア]タブから[デバイスマネージャー]をクリックしてください。

古いドライバからの更新方法

以前のドライバ(Ver.3.1.4.1)がインストールされている場合、以下の手順に従ってドライバを更新します。

ドライバファイルは 64bit OS 対応にともない以前の"Ver.3.1.4.1"から"CDM Driver 2.06.00"(または、 それ以降のバージョン)に変更されています。機能面での変更はございませんので、既に製品をご利用 のお客様に関しては以前のバージョンをそのままご利用いただいても問題ございません。

- ・ 接続されている『USBM3069』デバイスを全て外します。
- 「コントロールパネル」から[アプリケーションの追加と削除]、または、[プログラムの追加と削除]を開き ます。「FTDI FTD2XX USB Drivers」の項目を選択して削除してください(図 20)。

🐻 ΖαΰラムΦί	自加	
した しょう	~	現在インストールされているブログラム: □ 更新プログラムの表示(<u>0</u>) 並べ替え(S): 名前 🔍 <mark> 同 FTDI FTD2XX USB Drivers</mark>
プログラムの 追加(N)		このプログラムを変更したり、コンピュータから削除したりするには、「変更と削除剤をクリックしてくだ」 さい。
Windows コンボーネントの 追加と削除(<u>A</u>)		
プログラムの アクセスと 既定の設定(2)	<	

図 20 古いドライバのアンインストール

・ 前記に従い新しいドライバをインストールしてください。

□ VI ライブラリのインストール

LabVIEW でご利用の場合は、付属 CD の「¥VI¥TWB_VI¥setup.exe」を実行して、VIライブラリをイン ストールします。使用方法に関してはライブラリに付属するオンラインヘルプを参照してください。

□ 設定ツール

設定ツールのインストール

付属 CD の「¥TOOL¥USBMTools¥Setup.exe」を実行して、設定ツール(「USBMTools」)をインストールします。

設定ツールについて

標準のインストールでは、[スタート]メニュー→[すべてのプログラム]([プログラム])→[テクノウェー ブ]→[USBMTools]を選択すると、「USBMTools」(図 21)を起動することができます(画面イメージは バージョンや OS によって異なる場合があります)。

図 21 設定ツールのメニュー画面

プログラム名	機能説明
ReadID	パソコンに接続されている製品のベンダーID、プロダクト ID、USB シリア ル番号を表示します。
UAWriter	ユーザーエリアと呼ばれる領域にテキストデータを書き込みます。書き 込んだデータは製品識別に利用できます。
PowerConfig	製品のコンフィギュレーション情報をバスパワーまたはセルフパワーに 変更します。
M3069PIWriter	製品情報を書き込みます。製品情報については後述の説明を参照して ください。
M3069Option	起動時の入出カポート方向、出カデータ、プルアップ機能の許可/禁止 を指定します。
M3069FlashWriter	主に製品のフラッシュメモリにユーザーファームウェアをダウンロードす る場合に使用します。
M3069IniWriter	ユーザーファームに動作パラメータを与えたい場合に使用します。
USBM3069 Firmware Updater	製品のシステムファームを更新します。
USBM3069-HS Firmware Updater	この製品では使用しません。

表 25 設定ツールの機能説明

各設定ツールの使用方法については、オンラインヘルプまたは画面の説明を参照してください。

コンフィギュレーション情報の変更

コンフィギュレーション情報を変更するには「USBMTools」から「PowerConfig」を使用します。 デバイスをパソコンに接続し、[接続]ボタンを押します。[バスパワー]または[セルフパワー]を選択し、 [書込み]ボタンで設定を変更します。

C USBMPWSW	1)////			_ _ X
デバイ デオき デバイ ドでも 最初 バン し たし に も に る デバ し ほ き 、 の 、 で し に の し 、 に り い っ し 、 う 、 に う し 、 う 、 う 、 う 、 う 、 う 、 う 、 う 、 う 、 う	(スの設定 (スのます。 (スのます。 イスのモード 見ったした イスだしたを 押り マンを押り ろう	情報をバス には通常モ・ デバイスに 接続してく、 してデバイ リーのラジラ 押すと設定	パワーまた ードでもフラ に接続しま ださい。 スに接続を少き 評情報が書き	はセルフパワーに シッシュ書換えモー すので書込みを行 、バスパワー、ま リックします。 き換えられます。
VID 1237	PID	F002]	
Manufacture	Technowa	ave Ltd.		
Description	USBM306	i9SP		切断
USB S/N	TWUBFCO	07		
◎ バスパワー	<u>@</u> 코ル	ריזוק		番込み 終了

図 22 「PowerConfig」の画面

製品情報の設定

搭載マイコンのフラッシュメモリを利用して、製品の識別情報を記憶することができます。付属の TWB ライブラリでは予め書き込まれた製品情報を指定して、特定のデバイスを操作することができる ようになっていますので、『USBM3069』を組み込んだ装置の種類を調べたり、複数の製品を操作し たりが簡単に行えます。

また、製品情報はLAN インタフェース製品『LANM3069』でも同様に利用可能となっていますので、 USBとネットワークの両方に対応したプログラムを作成する場合にも有効です。

特に『USBM3069』を組み込んだアプリケーション製品を販売される場合は、誤って他のアプリケーション製品を操作することが無いように製品情報を指定してデバイスに接続することを推奨します。 表 26 は製品情報として設定可能な項目です。

表 26 「M3069PIWriter」の設定項目

項目	説明
סזוווו	世界中で重複することのない番号です。これを製品の ID として使用することで誤った製品の操作を防
0010	ぐことができます。
Number	32 ビットの整数を記録することができます。この値はデバイスに接続するときの識別用に使用すること
Number	ができます。ボード毎に違う番号を書き込んでおくと複数のデバイスを同時に操作する際に便利です。
製品名	お客様の製品名を格納することを想定しています。32 バイトまでの文字列を格納できます。
製造元	お客様の会社名を格納することを想定しています。32 バイトまでの文字列を格納できます。

製品情報の設定には「USBMTools」の「M3069PIWriter」を使用します。

UUID は[作成]ボタンを押すと自動的に生成されます。その他の項目は任意で入力してください。

H3069PIWriter	
ファイル(<u>E</u>) デバイ	(ス(D) 接続設定(O) ヘルプ(H)
ファイル操作 ファイルを開く	デバイス操作 デバイスと接続 編集画面に読出し
ファイルに保存	切断 デバイスへ書込み 日 Numberの自動加算
「編集データー	
UUID	作成
Number	32ビット整数 10進(例:255), 16進(例:0×ff)
製品名	
製造元	
現在のデーター	
UUID	
Number	32ビット整数 10進表示
製品名	
製造元	

図 23 「M3069PIWriter」の画面

デバイスを「フラッシュ書換えモード」でパソコンに接続し、[デバイスへ書込み]ボタンを押すと設定 内容が書き込まれます。「M3069PIWriter」の詳しい使用方法はオンラインヘルプを参照してください。

端子初期状態の設定

入出力端子の一部は起動時の初期状態を設定することができます。表 27 は初期設定が可能な信 号名と設定可能な項目です。

プルアップ設定が可能な端子は、プルアップ機能を有効にすると抵抗(16K~100KΩ相当)で VCC に接続された状態になります。

デフォルトでは、入出力切り替え可能な端子は全て入力、出力専用端子は全て"OFF"、プルアップ可能な端子は全てプルアップ機能が有効な状態で起動するようになっています。

信号名	設定可能項目	備考
P10~P17	入出力方向	出力するとアドレス信号(A0~A7)となります。 10KΩの抵抗でプルアップされています。
P20~P27	入出力方向/プルアップ	出力するとアドレス信号(A8~A15)となります。
P50~P53	入出力方向/プルアップ	出力するとアドレス信号(A16~A19)となります。
P40~P47	入出カ方向/出カデータ/プルアップ	
PA0~PA7	入出力方向/出力データ	10KΩの抵抗でプルアップされています。
POUT0#~POUT7#	出力データ	

表 27 初期設定が可能な信号と設定項目

各端子の初期状態を設定するには、「USBMTools」の「M3069Option」を使用します。

画面上のチェックボックスを操作し、希望の初期状態を設定します。

M3069Option					
ファイル(<u>E</u>) デバイス(<u>D</u>) 接続設定(<u>O</u>) ヘルプ(<u>H</u>)					
ファイルは操作 ファイルを開く ファイルに保存 切断		作 と接続 デバイスから読 デバイスへ書述	出し 製品情報 Aみ		
	入出力方向 7 6 5 4 3 2 1 0	出力データ 76543210	プルアップ 76543210		
P1					
P2					
P5					
P4					
PA					
POUT					
	チェックした端子が出 力になります。 P1. P2. P5 は出力する とアドレス出力となりま す。出力ポートとしては 使用できません。	チェックした端子は 「H」「または「ON」になり ます。 出力に設定した端子の み有効です。	チェックした端子は VOCIこプルアップされ ます。		

図 24 「M3069Option」の画面

デバイスを「フラッシュ書換えモード」でパソコンに接続し、[デバイスへ書込み]ボタンを押すと設定 内容が書き込まれます。「M3069Option」の詳しい使用方法はオンラインヘルプを参照してください。

ファームウェアの更新

製品のシステムファームはバグの修正や、機能追加のために不定期に新しいバージョンのものが 公開¹¹されます。システムファームの更新ファイルは設定ツールの中に含まれていますので、更新す る場合にはまず新しい設定ツールをご利用のパソコンにインストールしてください。

更新を行うには「USBMTools」のメニュー画面から「USBM3069 Firmware Updater」を選択します。

📕 USBM3069 Firmware Updater	×
USBM3069 ファームウェア更新プログラム 接続 切断 書込み	終了 ヘルプ
ハードウェア情報 現在のバージョン ままみまわる」(ニッジョン	
者さ込まず(のハーション 0.1.1	*
	-
4	4

図 25 システムファームの更新画面

デバイスを「フラッシュ書換えモード」でパソコンに接続し、[書込み]ボタンを押すとシステムファームが書き込まれます。更新ツールの詳しい使用方法はオンラインヘルプを参照してください。

 製品は製造時期により、出荷時に書き込まれているシステムファームのバージョンが、CD-ROM に 収められているのもよりも古い場合があります。ご使用になる前に更新ツールで[接続]を行い、バー ジョンが古い場合には更新を行ってください。

¹¹ 弊社ホームページにて随時公開します。

5. <u>トラブルシューティング</u>

□ 製品と通信ができない場合

製品と通信ができない場合、下記の事項をお確かめください。

- ・ ドライバが正しくインストールされているか確認してください。 確認方法は 20 ページ「ドライバのインストール」を参照してください。
- ・「USB-シリアルポート変換デバイス」をご利用の場合に、ドライババージョンが競合し、正しく動作しない 場合があります。お手数ですが弊社サポート窓口にお問い合わせください。

Appendix

□ 製品の応答時間

ライブラリ関数の呼び出しに対する応答時間は使用環境によって影響を受けますので一定ではありません。特に実行プロセスやスレッドの切り替えが起こった場合には、関数の実行に 10msec 以上の時間がかかる場合もありますのでご注意ください。

図 26 は参考として入力端子の読出し関数を1000 回行い、実行に要した時間をプロットしたものです。

図 26 製品の応答時間

<u>保証期間</u>

本製品の保証期間は、お買い上げ日より1年間です。保証期間中の故障につきましては、無償修 理または代品との交換で対応させていただきます。ただし、以下の場合は保証期間内であっても有 償での対応とさせていただきますのでご了承ください。

- 1. 本マニュアルに記載外の誤った使用方法による故障。
- 2. 火災、震災、風水害、落雷などの天災地変および公害、塩害、ガス害などによる故障。
- 3. お買い上げ後の輸送、落下などによる故障。

<u>サポート情報</u>

『USBM3069』に関する情報、最新のファームウェア、ユーティリティなどは弊社ホームページにてご 案内しております。また、お問い合わせ、ご質問などは下記までご連絡ください。

> テクノウェーブ(株) URL : http://www.techw.co.jp E-mail : support@techw.co.jp

- (1) 本書、および本製品のホームページに掲載されている応用回路、プログラム、使用方法などは、製品の代表的動作・応用例を説明するための参考資料です。これらに起因する第三者の権利(工業所有権を含む)侵害、損害に対し、弊社はいかなる責任も負いません。
- (2) 本書の内容の一部または全部を無断転載することをお断りします。
- (3) 本書の内容については、将来予告なしに変更することがあります。
- (4) 本書の内容については、万全を期して作成いたしましたが、万一ご不審な点や誤り、記載もれなど、お気づきの点がございましたらご連絡ください。

年月	版	改訂内容
2006年10月	初	
2007年3月	2	・「USBM ライブラリ 関数リファレンス」を削除(別冊化)
		・製品情報の利用方法に関する記述を追加
		・「デバイスのオープン」を更新
		・誤記の修正
2007 年 9 月	3	・システムファーム Ver.3.0.1 以降に対応した記述を追加
		・誤記の修正
2008年6月	4	・フラッシュメモリに関する記述を追加
		・誤記の修正
2009 年 11 月	5	・64bit 版対応の記述に変更
		・誤記の修正
2010年6月	6	・システムファーム Ver.4.2.1 以降に対応した記述に変更
		・USBM ライブラリ 3.6.0.1 以降に対応した記述に変更
2012 年 2 月	7	・対応 OS 仕様を変更
		・「USBMTools」に関する記述を変更
		・PC2#,PC3#信号の入力仕様の誤りを修正
		・AD 変換時間に関する記述を修正
		・その他
2012年6月	8	・誤記を修正
2012 年 6 月	9	・TWB ライブラリに対応
		・プログラミングに関する説明を別資料化
2013 年 3 月	10	・『YCH8/YSH8』の発売元変更に対応
		・対応 OS に Windows 8 を追加
2018年4月	11	・対応 OS に Windows 10 を追加

改訂記録